Computer Science
1

2019

1

Types of Noise Additive noise Additive noise is independent from image signal. The image g with nosie can be considered as the sum of ideal image f and noise n.[1] Multiplicative noise Multifplicative noise is often dependent on image signal. The relation of image and noise is[1]: Gaussian noise Gaussian noise, named after Carl Friedrich Gauss, is statistical noise having a probability density function (PDF) equal to that of the normal distribution, aka. the Gaussian distribution. i.e. the values that the noise can take on are Gaussian-distributed. The PDF of a Gaussian random variable is given by[2]: Salt-and-pepper noise Fat-tail distributed or "impulsive" noise is sometimes called salt-and-pepper nosie or spike noise. An image containing salt-and-pepper noise will have dark pixels in bright regions and bright pixels in dark regions.[2] The PDF of (Bipolar) Impulse noise is given by: if b > a, gray-level